

January 19, 1983

Mr. Thomas Tetting Division of Oil, Gas & Mining 4241 State Office Building Salt Lake City, UT 84114

RE: Mercur Mine Modification

ACT/045/017

JAN 21 1983

DIVISION OF OIL GAS & MINING

Dear Tom:

In response to the Division's request for hydrologic design data related to the Mercur drainage plan, we are providing the following information:

SEDIMENT PONDS

All sediment ponds are sized to contain the 10-year 24-hour runoff from their controlled areas as live storage. They will also contain one-year's contribution of sediment from the controlled areas as dead storage. Spillway designs will pass overflow peaks from the 100-year 24-hour event.

Pond	Live Storage	Dead Storage	Spillway
A	6.7 Ac. Ft.	4.0 ac. ft.	108 cfs
B	3.9 " "	1.0 " "	61 "
C	5.3 " "	7.3 " " 2.6 " "	85 "
D	1.9 " "		29 "

All sediment pond embankments will be engineered fills with 2:1 side slopes and crest widths of at least 10-feet. At least one-foot of freeboard will be provided.

DRAINAGE DIVERSIONS

All drainage collection and diversion channels are designed to pass the 10-year 24-hour runoff. The estimated 10-year 24-hour peak flows are listed along with the zero freeboard capacity (Qmax) and velocity (Vmax) for each channel.

AREA II DRAINAGE DIVERSION

End of Ditch Design To Top of Dump

qp = 10 Cfs Slope = 2% n = 0.030 Qmax = 26 cfs Vmax = 5.2 fps

Minimum Plant Site Diversion Ditch

qp = 22 cfs Slope = 1% n = 0.030 Qmax = 27.7 cfs Vmax = 4.6 fps

AREA III DRAINAGE CHANNEL

Reach A

qp = 1 - 4 cfs Slope = 1% n = .030 Qmax = 4.2 cfs Vmax = 2.8 fps

Reach B

qp = 1 - 5 cfs Slope = 67% n = 0.024 Qmax = 5 cfs Vmax = 12.7 fps

Reach C

Reach D

AREA IV DRAINAGE DIVERSION

Midway Design

End of Ditch Design

qp = 20 - 35 cfs Slope = 3% n = 0.030 Qmax = 38.4 cfs Vmax = 6.4 fps

Our present design for water conveyance across our haul roads is to use rock-paved swales instead of culverts. We believe that these non-erosive swales will be more reliable then their alternatives, which are 18" to 24" culverts up to 100' long.

Sincerely,

GETTY MINING COMPANY

Brian W. Buck

Enviornmental Coordinator

BWB/nb